# **JEE MAINS 2020 PROBLEM SET: online**

1 JEE Main 2020 (Online) 9th January Morning Slot

MCQ (Single Correct Answer)

The value of

$$\cos^3\left(\frac{\pi}{8}\right)\cos\left(\frac{3\pi}{8}\right)$$
+ $\sin^3\left(\frac{\pi}{8}\right)\sin\left(\frac{3\pi}{8}\right)$ 

is:

- $\frac{1}{\sqrt{2}}$
- $\frac{1}{2}$
- $\frac{1}{4}$

Ans - D

4 JEE Main 2020 (Online) 9th January Evening Slot

MCQ (Single Correct Answer)

If 
$$x=\sum\limits_{n=0}^{\infty}{(-1)^n an^{2n} heta}$$
 and  $y=\sum\limits_{n=0}^{\infty}{\cos^{2n} heta}$ 

for 0 <  $\theta$  <  $\frac{\pi}{4}$ , then :

- A x(1 + y) = 1
- B y(1 x) = 1
- y(1 + x) = 1
- D x(1-y) = 1

Ans - B

#### 3 JEE Main 2020 (Online) 2nd September Evening Slot

MCQ (Single Correct Answer)

If the equation  $\cos^4 \theta + \sin^4 \theta + \lambda = 0$  has real solutions for  $\theta$ , then  $\lambda$  lies in the interval :

- $\left[-\frac{3}{2}, -\frac{5}{4}\right]$
- $\left[-\frac{1}{2}, -\frac{1}{4}\right]$
- $(-\frac{5}{4},-1]$

### <u>Ans - D</u>



JEE Main 2020 (Online) 5th September Evening Slot

MCQ (Single Correct Answer)

If L = 
$$\sin^2\left(\frac{\pi}{16}\right)$$
 -  $\sin^2\left(\frac{\pi}{8}\right)$  and

M = 
$$\cos^2\left(\frac{\pi}{16}\right)$$
 -  $\sin^2\left(\frac{\pi}{8}\right)$ , then :

- A L =  $-\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$
- B  $M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$
- **C** M =  $\frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$
- D L =  $\frac{1}{4\sqrt{2}} \frac{1}{4} \cos \frac{\pi}{8}$

#### Ans - B

# **JEE MAINS 2019 PROBLEM SET: ONLINE**

# 2 JEE Main 2019 (Online) 9th January Morning Slot

MCQ (Single Correct Answer)

For any  $heta \in \left(rac{\pi}{4}, rac{\pi}{2}
ight)$  , the expression

$$3(\cos\theta-\sin\theta)^4+6(\sin\theta+\cos\theta)^2+4\sin^6\theta$$

equals:

- $\triangle$  13 4  $\cos^2\theta$  +  $6\sin^2\theta\cos^2\theta$
- **B**  $13 4 \cos^6 \theta$
- $\circ$  13 4  $\cos^2\theta$  + 6 $\cos^2\theta$

### Ans - B

# 1 JEE Main 2019 (Online) 9th January Evening Slot

MCQ (Single Correct Answer)

If  $0 \le x < \frac{\pi}{2}$ , then the number of values of x for which  $\sin x - \sin 2x + \sin 3x = 0$ , is :

- A 3
- **B** 1
- **C** 4
- **D** 2

### <u> Ans - D</u>

The sum of all values of  $\theta \in \left(0, \frac{\pi}{2}\right)$  satisfying

$$\sin^2 2\theta + \cos^4 2\theta = \frac{3}{4} \text{ is } -$$

- $\frac{5\pi}{4}$
- $\frac{\pi}{2}$
- $\odot$   $\pi$

#### Ans - B

3 JEE Main 2019 (Online) 10th January Evening Slot

MCQ (Single Correct Answer)

The value of  $\cos \frac{\pi}{2^2}.\cos \frac{\pi}{2^3}.\ldots.\cos \frac{\pi}{2^{10}}.\sin \frac{\pi}{2^{10}}$  is -

- $\frac{1}{256}$
- $\frac{1}{1024}$

Ans - D

2 JEE Main 2019 (Online) 12th January Morning Slot

MCQ (Single Correct Answer)

The maximum value of  $3{\cos}\theta$  +  $5{\sin}\left(\theta-\frac{\pi}{6}\right)$  for any real value of  $\theta$  is :

- $\wedge$   $\sqrt{34}$
- $\sqrt{19}$

Ans - C

|  | 1 | <b>JEE Main 2019</b> | (Online) | 8th April | Morning | Slot |
|--|---|----------------------|----------|-----------|---------|------|
|--|---|----------------------|----------|-----------|---------|------|

MCQ (Single Correct Answer)

If  $\cos(\alpha+\beta)$  = 3/5 ,sin (  $\alpha$  -  $\beta$ ) = 5/13 and 0 <  $\alpha$  ,  $\beta$  <  $\frac{\pi}{4}$  , then  $\tan(2\alpha)$  is equal to :

- A 21/16
- B 63/52
- 33/52
- D 63/16

### Ans - D

# 4 JEE Main 2019 (Online) 9th April Morning Slot

MCQ (Single Correct Answer)

The value of  $\cos^2 10^\circ - \cos 10^\circ \cos 50^\circ + \cos^2 50^\circ$  is

- $\frac{3}{2} + \cos 20^{\circ}$
- $\frac{3}{2}(1+\cos 20^{o})$

#### Ans - B

# 3 JEE Main 2019 (Online) 9th April Morning Slot

MCQ (Single Correct Answer)

Let S =  $\{\theta \in [-2\pi, 2\pi] : 2\cos^2\theta + 3\sin\theta = 0\}$ . Then the sum of the elements of S is

- $\Lambda$   $\pi$
- **B** 2π
- $\frac{13\pi}{6}$
- $\frac{5\pi}{3}$

### Ans - B

| 2 | JEE Main 2019 (Online) 9th April Evening S | Slot |
|---|--------------------------------------------|------|
|   | MCQ (Single Correct Answer)                |      |

The value of sin 10° sin30° sin50° sin70° is :-

- $\frac{1}{36}$
- $\frac{1}{16}$
- $\frac{1}{32}$

#### Ans - B

# 1 JEE Main 2019 (Online) 12th April Morning Slot

MCQ (Single Correct Answer)

The number of solutions of the equation

1 + 
$$\sin^4 x = \cos^2 3x$$
,  $x \in \left[-\frac{5\pi}{2}, \frac{5\pi}{2}\right]$  is :

- A 5
- **B** 3
- **C** 7
- **D** 4

#### Ans - A

# 4 JEE Main 2019 (Online) 12th April Morning Slot

MCQ (Single Correct Answer)

The equation  $y = \sin x \sin (x + 2) - \sin^2 (x + 1)$  represents a straight line lying in :

- A first, second and fourth quadrants
- B first, third and fourth quadrants
- second and third quadrants only
- D third and fourth quadrants only

#### Ans - D

3 JEE Main 2019 (Online) 12th April Evening Slot

MCQ (Single Correct Answer)

If [x] denotes the greatest integer  $\leq$  x, then the system of linear equations [ $\sin \theta$ ]x + [ $-\cos \theta$ ]y = 0, [ $\cot \theta$ ]x + y = 0

- (A) has a unique solution if  $heta\in\left(rac{\pi}{2},rac{2\pi}{3}
  ight)$  and have infinitely many solutions if  $heta\in\left(\pi,rac{7\pi}{6}
  ight)$
- f B have infinitely many solutions if  $heta\in\left(rac{\pi}{2},rac{2\pi}{3}
  ight)$  and has a unique solution if  $heta\in\left(\pi,rac{7\pi}{6}
  ight)$
- $oldsymbol{\circ}$  have infinitely many solutions if  $heta\in\left(rac{\pi}{2},rac{2\pi}{3}
  ight)\cup\left(\pi,rac{7\pi}{6}
  ight)$
- lacktriangledown has a unique solution if  $heta\in\left(rac{\pi}{2},rac{2\pi}{3}
  ight)\cup\left(\pi,rac{7\pi}{6}
  ight)$

### Ans - B